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Guaianolides represent one of the largest groups of naturally
occurring sesquiterpene lactones.1 Apart from relay syntheses2

involving eudesmane and germacrane sesquiterpenes as starting
points, total syntheses of only a handful of natural guaianolides
are reported. (()-Compressanolide and (()-estafiatin (1) were
synthesized by Vandewalle and co-workers3 starting from
2-cyclopentenone via a hydroazulenic diketone. Rigby and co-
workers4 utilizedcis-fused hydroazulenic intermediates derived
from tropone for the preparation of (()-1, (()-dehydrocostus
lactone, and (()-grosshemin. In view of the known tumor
inhibitory, schistosomicidal, anthelmintic, contraceptive, and
plant growth regulatory activities5 for members of the guaiano-
lide family, this paucity of synthetic successes is surprising6

and in contrast to the prodigious synthetic output registered for
the closely related pseudoguaianolides.7

We reported recently that the chlorohydrin derivative of (-)-
carvone (3) was stereoselectively converted into the cyclopen-
tanecarboxylate4 via Favorskii rearrangement.8 In the product
4, the isopropenyl substituent and the methoxycarbonyl group
were cis to each other. This particular arrangement is remi-
niscent of thecis-fused hydroazulenic ring system in many gua-
ianolides, and it was realized that effective synthesis of gua-
ianolides might be possible, provided reasonably efficient ways
of seven-membered ring formation are devised (Scheme 1).
Herein, we report that 5-exo,7-endotandem radical cyclizations
can be employed successfully for the formation ofcis-fused
hydroazulenic lactone systems culminating in stereoselective to-
tal syntheses of (-)-estafiatin (1)9 and (+)-cladantholide (2).10

Reduction of4with diisobutylaluminum hydride afforded the
corresponding aldehyde5 in 85% yield. Addition of vinyl-
magnesium bromide to the aldehyde moiety in5was completely
stereoselective: the Felkin type addition product6was isolated
in high yield as the sole product. The allylic alcohol6 was
efficiently converted into the corresponding bromoacetal7 upon
exposure to 1,2-dibromo-1-ethoxyethane. When7 was sub-
jected to the standard high-dilution, radical generating conditions
utilizing tributylstannane and 2,2′-azobisisobutyronitrile (AIBN),
a 99% yield of the hydroazulenic acetal8 was obtained. At
this point, structural assignment of8 was difficult, and the
definite structural assignment had to wait until a suitable
crystalline derivative was prepared for X-ray crystal diffraction
studies. In the event, the ketolactone9, prepared from the
radical cyclization product8 via THP deprotection and Jones
oxidation, was crystallized and and the structure was determined
unambiguously11 (Scheme 2).
The initial 5-exo radical cyclization was expected to give

predominantly thetrans cyclic acetal. It is well-known that
radical cyclizations of 4-substituted 5-hexenyl radicals yield
mainly trans-disubstituted cyclopentanoid products.12 After
7-endocyclization, hydrogen abstraction by the tertiary radical
was also expected to occur from the sterically less encumbered
R face to give the correct strereochemistry at C-10 (Scheme 3).
The most noteworthy aspect of this transformation is the high
efficiency of the 7-endoradical cyclization. Examples for the
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Scheme 1

Scheme 2

a THF, -90 to-80 °C. b THF, 0 °C. c 3.0 equiv; 3.0 equiv TEA,
cat. DMAP, DCM, 0°C to rt, 12 h.d 1.5 equiv; 0.2 equiv of AIBN,
benzene (0.025 M), reflux, 6 h (syringe pump, 5 h). TEA) triethyl-
amine, DMAP) 4-(dimethylamino)pyridine, DCM) dichloromethane.
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preferential 7-endo radical cyclization over the 6-exo mode
alternative are known,13 but an almost quantitative yield of8
from 7 is truly remarkable. Thus, radical cyclization appears
to be a viable alternative in the preparation of compounds
containing seven-membered rings.
Deprotection and pyridinium chlorochromate (PCC) oxidation

of 8 yielded the keto acetal10 in 80% yield, which was
converted into the hydroxy ketone11 in good yield via
trimethylsilyl enol ether formation and oxidation with dimeth-
yldioxirane. Under standard Shapiro reaction conditions using
excess methyllithium,11was transformed into the allylic alcohol
12 in 40% yield. The yield did not improve despite considerable
amount of efforts made.14 It is worth mentioning that the double
bond was formed away from the resident hydroxyl group.
Presumably, the reaction proceeded through an intermediate in
which the alkoxylithium is coordinated with the first nitrogen
atom of the hydrazone moiety.15 Jones oxidation of12afforded
the enone13 in 65% yield, and lithium diisopropylamide (LDA)-
mediated enolate formation and subsequent methylation pro-
ceeded stereoselectively to give (+)-cladantholide (2)16 in 71%
yield (Scheme 4).
The generality of 7-endoradical cyclization was then tested

in the synthesis of (-)-estafiatin (1). The allylic alcohol6was

esterified with chloromalonyl chloride to give the corresponding
chloromalonate14 in high yield. Under oxidative radical-
generating conditions employing manganese(III) acetate and
copper(II) acetate,17 the substrate14underwent smooth 5-exo,7-
endotandem radical cyclizations affording a 3:1 mixture of the
tricyclic chlorolactone15 in 65% yield. Reductive dechlori-
nation of15 resulted in the simultaneous deprotection of the
THP ether moiety, and a 10:1 epimeric mixture of the product
16 was obtained in 87% yield. Dehydration of16 with
methyltriphenoxyphosphonium iodide in hexamethylphosphoric
triamide (HMPA)18 proceeded uneventfully to give the diene
17 in 82% yield. Methylenation of the corresponding carboxylic
acid with Eschenmoser’s salt and subsequent epoxidation
afforded (-)-estafiatin (1) (Scheme 5).19

In each of the present studies, a cyclopentanoid intermediate
was utilized in the preparation of the guaianolide skeleton by
fusing a seven-membered carbocycle and a lactone moiety.
Remarkably, the 5-exo,7-endotandem radical cyclizations were
found to be highly efficient under reductive or oxidative radical-
generating conditions solving at the same time the difficult
stereochemical problems in forming functionalized seven-
membered carbocycles.20 The 7-endoradical cyclization strat-
egy may lead to practical syntheses of many natural products
containing seven-membered rings, and the progress in these
areas of studies will be reported in due course.
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Scheme 3

Scheme 4

Dimethy
dioxiraneb

-l

a 1.1 equiv; 2.0 equiv; THF,-78 °C. b 1.2 equiv; DCM,-78 °C, 30
min. c 1.2 equiv; MeOH, 3 Å MS, reflux, 4 h.d 7.0 equiv; THF, rt, 30
min. eAcetone, 0 to 10°C, 8 h. f 2.2 equiv; 1.0 equiv; THF,-78 °C.

Scheme 5

a 1.3 equiv; cat. DMAP, DCM, pyridine, 0°C to rt, 1 h.b 2.0 equiv;
1.0 equiv; EtOH, reflux, 3 h.c 1.1 equiv; HMPA, 80°C, 1 h. d 1.1
equiv; CH3CN‚H2O (10:1), rt, 10 h/3.0 equiv; reflux, 1 h.e 3.0 equiv;
CHCl3, -20 to 5°C, 3 h.
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